Structure and properties of Al–Mg mechanical alloys
نویسندگان
چکیده
Mechanically alloys in the Al–Mg binary system in the range of 5–50 at.% Mg were produced for prospective use as metallic additives for propellants and explosives. Structure and composition of the alloys were characterized by x-ray diffraction microscopy (XRD) and scanning electron microscopy. The mechanical alloys consisted of a supersaturated solid solution of Mg in the aluminum phase, phase (Al12Mg17), and additional amorphous material. The strongest supersaturation of Mg in the phase (20.8%) was observed for bulk Mg concentrations up to 40%. At 30% Mg, the phase formed in quantities detectable by XRD; it became the dominating phase for higher Mg concentrations. No phase (Al3Mg2) was detected in the mechanical alloys. The observed Al solid solution generally had a lower Mg concentration than the bulk composition. Thermal stability and structural transitions were investigated by differential scanning calorimetry. Several exothermic transitions, attributed to the crystallization of and phases were observed. The present work provides the experimental basis for the development of detailed combustion and ignition models for these novel energetic materials.
منابع مشابه
Investigating the Effects of Cold Bulge Forming Speed on Thickness Variation and Mechanical Properties of Aluminum Alloys: Experimental and Numerical
In this work, cold bulge forming of an Aluminium-Magnesium (Al-Mg) sheet with a solid bulging medium is performed experimentally and numerically. Mechanical properties and thickness variations of Al-Mg sheet are evaluated before and after the forming process. The results indicated that the Al-Mg sheet has taken the desired shape without necking using the cold bulge forming process. Also, the...
متن کاملCREEP AGE FORMING OF Al-Zn-Mg ALLOYS WITH OPTIMIZATION OF MECHANICALl PROPERTIES
Creep age forming (CAF) is one of the novel methods in aerospace industry that has been used to manufacture components of panels with improved mechanical properties and reduced fabrication cost. CAF is a combined age-hardening and stress-relaxation that are responsible for strengthening and forming, respectively. This paper deals with the experimental investigations of mechanical and springback...
متن کاملEffect of heat treatment on the grain structure and mechanical properties of Al-7075 friction stir weld
The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth...
متن کاملEffect of heat treatment on the grain structure and mechanical properties of Al-7075 friction stir weld
The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth...
متن کاملAZ31/HA-Zeolite Nano Crystalline Biocomposite Fabricated by Mechanical Alloying and Powder Metallurgy: Mechanical Properties
Magnesium and its alloys are light, biodegradable, biocompatible metals that have promising applications as biomaterials. Magnesium is potentially useful for orthopedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. One of the ways to improve the corrosion rate is to compose it’s with cer...
متن کاملGrain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy
The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...
متن کامل